MTH 507 (or 605): Introduction to algebraic topology (or Topology I)

Semester 1, 2015-16

1. Point-set topology

1.1. Topological space.

- (i) Topology on a set with example.
- (ii) Coarser and finer topologies.

1.2. Basis for a topological space.

- (i) Basis for a topology with examples.
- (ii) Let \mathcal{B} be the basis for a topology \mathcal{T} on X. Then \mathcal{T} is the collection of all unions of elements of \mathcal{B} .
- (iii) Suppose that \mathcal{B} is a collection of open sets of a topological X such that for each open set U of X and each $x \in U$, there is an element $B \in \mathcal{B}$ such that $x \in B \subset U$. Then \mathcal{B} is a basis for a topology \mathcal{T} on X.
- (iv) Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:
 - (a) \mathcal{T} is finer than \mathcal{T}' .
 - (b) For each $x \in X$, and each basis element $B \in \mathcal{B}$ containing x, there exists a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.
- (v) The standard, lower-limit (\mathbb{R}_{ℓ}) , and $K(\mathbb{R}_{K})$ topologies on \mathbb{R} .

1.3. Subspace topology.

- (i) Subspaces with examples.
- (ii) If \mathcal{B} is a basis for a topology on X, then the collection $\mathcal{B}_Y = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.
- (iii) If U is open in a set Y and Y is open in X, then U is open in X.

1.4. Closed sets and limit points.

- (i) Closed sets with examples.
- (ii) Let X be a topological space. Then
 - (a) \emptyset and X are closed.
 - (b) Arbitrary intersection of closed sets is closed.
 - (c) Finite union of closed sets is closed.
- (iii) Let Y be a subspace of X. Then a set A is closed in Y if, and only if it is the intersection of a closed set in X with Y.
- (iv) Closure (\overline{A}) and interior (A°) of set A.

- (v) Let A be a subset of Y. Then the closure of A in Y is the closure of A in X intersected with Y.
- (vi) Let A be a subset of X. Then $X \in \overline{A}$ if and only if every open set containing x intersects A.
- (vii) Limit points and set A' of all limit points of A.
- (viii) Let A be a subset of X. Then $\overline{A} = A \cup A'$.
- (ix) Hausdorff and T_1 spaces with examples.
- (x) Let A be a subset of a T_1 space X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.
- (xi) Any sequence converges to a unique limit point in a Hausdorff space.
- (xii) The product of two Hausdorff spaces is Hausdorff, and a subspace of a Hausdorff space is Hausdorff.

1.5. Continuous functions with examples.

- (i) Continuous functions with examples.
- (ii) Let X and Y be topological spaces, and let $f : X \to Y$. Then the following are equivalent:
 - (a) f is continuous.
 - (b) For every subset $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.
 - (c) For every closed subset B of Y, $f^{-1}(B)$ is closed in X.
- (iii) Homeomorphisms with examples.
- (iv) A map $f : X \to Y$ is continuous if X can be written as the union of open sets U_{α} such that $f|_{U_{\alpha}}$ is continuous for each α .
- (v) Pasting Lemma: Let $X = A \cup B$, where A and B are closed in X, and let $f : A \to X$, $g : B \to X$ be continuous. If f(x) = g(x) for each $x \in A \cap B$, then the function h defined by

$$h(x) = \begin{cases} f(x), & \text{if } x \in A \\ g(x), & \text{if } x \in B \end{cases}$$

is continuous.

1.6. Product topology.

- (i) Product and box topologies on $\prod_{\alpha} X_{\alpha}$, and their bases.
- (ii) If each X_{α} is a Hausdorff space, then $\prod X_{\alpha}$ is a Hausdorff space in both the box and product topologies.
- (iii) Let $\{X_{\alpha}\}$ be a family of topological spaces, and let $A_{\alpha} \subset X_{\alpha}$ for each α . If $\prod X_{\alpha}$ is given either the product or the box topology, then

$$\prod \overline{A_{\alpha}} = \prod A_{\alpha}$$

(iv) If $f : A \to \prod X_{\alpha}$ be given by the equation $f(a) = (f_{\alpha}(a))$, where $f_{\alpha} : A \to X_{\alpha}$ for each α , and $\prod X_{\alpha}$ has the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.

1.7. Metric topology.

- (i) Metric topology with examples, and metrizability.
- (ii) Sequence Lemma: Let X be a topological, and let $A \subset X$. If there exists a sequence of points in A coverging to x, then $x \in \overline{A}$. The converse holds if X is metrizable.
- (iii) If $f : X \to Y$ is continuous, then for every convergent sequence $x_n \to x$, the sequence $(f(x_n))$ converges to f(x). The converse holds if X is metrizable.
- (iv) Uniform convergence of a sequence of functions.
- (v) Uniform limit theorem: Let $f_n : X \to Y$ be a sequence of continuous functions from a topological space X to a metric space Y. If (f_n) converges uniformly to f, then f is continuous.
- (vi) The box topology on \mathbb{R}^{∞} and any uncountable product of \mathbb{R} with itself are not metrizable.

1.8. Quotient topology.

- (i) Quotient map with examples.
- (ii) Saturated subsets.
- (iii) Open and closed maps.
- (iv) Quotient topology and quotient space.
- (v) Let $p : X \to Y$ be a quotient map. Let Z be a space and let $g : X \to Z$ be a map that is constant on each fiber $p^{-1}(\{y\})$. Then g induces a map $f : Y \to Z$ such that $f \circ p = g$. The induced map f is continuous if and only if g is continuous. Moreover, f is a quotient map if and only if g is a quotient map.
- (vi) Let $g : X \to Z$ be a surjective continuous map. Let $X^* = \{g^{-1}(\{z\}) \mid z \in Z\}$ with the quotient topology.
 - (a) The map g induces a bijective map $f : X^* \to Z$, which is a homeomorphism if and only if g is a quotient map.
 - (b) If Z is Hausdorff, so is X^* .

1.9. Connected and path connected spaces.

(i) Connected spaces with examples.

- (ii) Union of a collection of connected subspaces of X that have a point in common is connected.
- (iii) Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then B is also connected.
- (iv) The image of a connected space under a continuous map is connected.
- (v) A finite cartesian product of connected spaces is connected.
- (vi) \mathbb{R}^{∞} is not connected with box topology, but connected with product topology.
- (vii) The intervals in \mathbb{R} are connected.
- (viii) Path connectedness with examples.

1.10. Components and local connectedness.

- (i) Connected and path components.
- (ii) Local connectedness and local path connectedness with examples.
- (iii) A space is locally connected if and only if for every open set U of X, each component of U is open in X.
- (iv) A space X is locally path connected if and only if for every open set U of X, each path component of U is open in X.
- (v) Each path component of a space X lies in a component of X. If X is locally path connected, then the components and path components of X are the same.

1.11. Compact spaces.

- (i) Open covers.
- (ii) Compact spaces with examples.
- (iii) Compactness of a subpsace.
- (iv) Every closed subspace of a compact space is compact.
- (v) Every compact subspace of a Hausdorff space is closed.
- (vi) Countinuous image of a compact space is compact.
- (vii) Let $f : X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.
- (viii) Product of finitely many compact spaces is compact.
- (ix) Finite intersection property.
- (x) A space X is compact if and only if for every finite collection C of closed sets in X having the finite intersection property, the intersections $\bigcap_{C \in C} C \neq \emptyset$.

1.12. Compact subspaces of the real line.

- (i) Every closed interval in \mathbb{R} is compact.
- (ii) A subspace A of \mathbb{R}^n is compact if and only if it is closed and bounded.
- (iii) Lebesque number lemma: Let \mathcal{A} be an open covering of the metric space (X, d). If X is compact, then there is a $\delta > 0$ such that for each subset of X having diameter less than δ , there exists an element of \mathcal{A} containing it.
- (iv) Uniform continuity theorem: A continuous function on a compact metric space is uniformly continuous.
- (v) A nonempty Hausdorff space with no isolated points is uncountable.
- (vi) Every closed interval in \mathbb{R} is uncountable.

1.13. Limit point compactness.

- (i) Limit point compactness and sequential compactness with examples.
- (ii) Compactness implies limit point compactness, but not conversely.
- (iii) In a metrizable space X, the following are equivalent:
 - (a) X is compact.
 - (b) X is limit point compact.
 - (c) X is sequentially compact.

1.14. Local compactness.

- (i) Local compactness with examples.
- (ii) X is a locally compact Hausdorff space if and only if there exists a space Y satisfying the following conditions.
 - (a) X is a subspace of Y.
 - (b) the set Y X is a single point.
 - (c) Y is a compact Hausdorff space.
 - If Y and Y' are two spaces satisfying these conditions, then there is a homepmorphism of Y with Y' that equals the identity on X.
- (iii) One-point compactification with examples.
- (iv) Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood $U \ni x$, there is a neighborhood $V \ni x$ such that \overline{V} is compact and $\overline{V} \subset U$.
- (v) Let X be a locally compact Hausdorff space. If A is either open or closed in X, then A is locally compact.

1.15. Countability axioms.

(i) First- and second-countability axioms.

- (ii) If there is a sequence of points of $A \subset X$ converging to x, then $x \in \overline{A}$. The converse holds if x is first-countable.
- (iii) If $f: X \to Y$ is continuous, then for every convergent sequence $x_n \to x$, the sequence $f(x_n) \to f(x)$. The converse holds if X is first-countable.
- (iv) The subspace of a first-countable (or second-countable) space is firstcountable (or second countable).
- (v) The product of first-countable (or second-countable) spaces is first-countable (or second countable).
- (vi) If f is second-countable, then
 - (a) every open covering of X contains a countable subcovering.
 - (b) there exists a countable subset of X that is dense in X.
- (vii) Lindelöf space.
- (viii) \mathbb{R}_{ℓ} is not second-countable.
- (ix) Product of Lindelöf spaces need not be Lindelöf.
- (x) Regular and normal spaces.

1.16. Separation axioms.

- (i) The subspace of a Huasdorff space is Hausdorff. The product of Hausdorff spaces in Hausdorff.
- (ii) The subspace of a regular space is regular. The product of regular spaces in regular.
- (iii) \mathbb{R}_k is Hausdorff but not regular.
- (iv) \mathbb{R}^2_{ℓ} is not normal.
- (v) Every regular space with countable basis is normal.
- (vi) Every compact Hausdorff space is normal.
- (vii) Every metrizable space is normal.
- (viii) If J is uncountable, then the product space \mathbb{R}^J is not normal.
- (ix) (Urysohn's Lemma) Let X be a normal space, and let A and B be disjoint subsets of X. Then there exists a continuous map $f: X \to [a, b]$ such that f(x) = a for every $x \in A$ and f(x) = b for every $x \in B$.
- (x) (Urysohn metrization theorem) Every regular second-countable space is metrizable.
- (xi) (Tietze extension theorem) Let X be a normal space, and let A be a closed subspace of X.
 - (a) Then any continuous map of A into [a, b] may be extended to a continuous map from X into [a,b].
 - (b) Any continuous map of A into \mathbb{R} may be extended to a continuous map of X into \mathbb{R} .

6

- (xii) *m*-manifold and partitions of unity.
- (xiii) If $\{U_1, \ldots, U_n\}$ be a open covering of a normal space X, then there exists a partition of unity dominated by $\{U_i\}$.
- (xiv) A compact *m*-manifold can be imbedded in \mathbb{R}^n for some positive integer n.

1.17. Nagata-Smirnov metrization.

- (i) Local finiteness and countable local finiteness.
- (ii) Open and closed refinements.
- (iii) Every open cover of a metrizable space has countably locally finite refinement.
- (iv) (Nagata-Smirnov metrization theorem) A space X is metrizable if and only if X is regular and has a countably locally finite basis.

1.18. Paracompactness.

- (i) Paracompactness.
- (ii) Every paracompact Hausdorff space is normal.
- (iii) Every closed subspace of a paracompact space is paracompact.
- (iv) Every metrizable space is paracompact.
- (v) Every Lindelöf space is paracompact.

2. Algebraic topology

2.1. Homotopy.

- (i) Homotopy of continuous maps.
- (ii) Homotopy of paths (or path homotopy $f \simeq g(via)H$).
- (iii) \simeq is an equivalence relation.
- (iv) Straight line homotopy in \mathbb{R}^n .
- (v) The * operation on paths.
- (vi) Extension of * operation to homotopy classes of paths and its properties.

2.2. Fundamental group.

- (i) The space of all homotopy classes of loops based at $x_0 \in X$, $\pi_1(X, x_0)$.
- (ii) $(\pi_1(X, x_0), *)$ is a group, the Fundamental group of X based at x_0 .
- (iii) The isomorphism $\hat{\alpha} : \pi_1(X, x_0) \to \pi_1(X, x_1)$, where α is a path from x_0 to x_1 .
- (iv) Simply connected spaces.
- (v) In a simply connected space, any two paths having the same initial and end points are path homotopic.

- (vi) The homomorphism $h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ induced by a continuous map $h: (X, x_0) \to (Y, y_0)$.
- (vii) The homomorphism induced by the identity map $(i_X)_*$ is the identity homomorphism on the fundamental group $\pi_1(X, x_0)$.
- (viii) If $f: (X, x_0) \to (Y, y_0)$ and $g: (Y, y_0) \to (Z, z_0)$ are continuous maps, then $(g \circ f)_* = g_* \circ f_*$.
- (ix) If $f: (X, x_0) \to (Y, y_0)$ is a homeomorphism, then $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is an isomorphism.

2.3. Covering spaces.

- (i) Evenly covered neighborhoods.
- (ii) Covering spaces with examples.
- (iii) The standard covering space $p : \mathbb{R} \to S^1$ given by $p(s) = e^{i2\pi s}$.
- (iv) If $p: \widetilde{X} \to X$ and $q: \widetilde{Y} \to Y$ are covering spaces, then $p \times q: \widetilde{X} \times \widetilde{Y} \to X \times Y$ is a covering space.
- (v) The covering space $p\times p:\mathbb{R}^2\to S^1\times S^1$ of the torus.
- (vi) Lifting of continuous maps.
- (vii) Let $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ be a covering map. Then any path $f: [0, 1] \to X$ with $f(0) = x_0$ has a unique lift to a path \widetilde{f} in \widetilde{X} with $\widetilde{f}(0) = \widetilde{x_0}$.
- (viii) Let $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ be a covering map. Let $H: I \times I \to X$ be a continuous map with $H(0, 0) = x_0$. Then there is a unique lift of H to a continuous map $\widetilde{H}: I \times I \to E$ such that $\widetilde{H}(0, 0) = x_0$. If H is a path homotopy, then so is \widetilde{H} .
- (ix) Let $p: (X, \widetilde{x_0}) \to (X, x_0)$ be a covering space. Let f and g be two paths in X from x_0 to x_1 , and let \tilde{f} and \tilde{g} be their respective liftings to paths in \tilde{X} beginning at $\widetilde{x_0}$. If $f \simeq g(via H)$, the $\tilde{f}(1) = \tilde{g}(1)$ and $\tilde{f} \simeq \tilde{g}(via \tilde{H})$.
- (x) (Lifting Criterion) Suppose that we have a covering space $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$, and a map $f: (Y, y_0) \to (X, x_0)$ with Y being a path connected and a locally path-connected space. Then a lift $\widetilde{f}: (Y, y_0) \to (\widetilde{X}, x_0)$ exists iff $f_*(\pi_1(Y, y_0)) \leq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$.
- (xi) (Uniqueness of lift) Given a covering space $p: \widetilde{X} \to X$ and a map $f: Y \to X$ with two lifts $\widetilde{f}_1, \widetilde{f}_2: Y \to X$ that agree in one point of Y. If Y is connected, then these two lifts must agree in all of Y.
- (xii) If a space X is path-connected, locally path-connected, and semilocally simply-connected, then X has a universal covering space $p: \tilde{X} \to X$.
- (xiii) Suppose that a space X is path-connected, locally path-connected, and semilocally simply-connected. Then for every subgroup $H \leq \pi_1(X, x_0)$,

there is a covering space $p: X_H \to X$ such that $p_*(\pi_1(X, x_0)) = H$, for a suitably chosen basepoint $\widetilde{x_0} \in X_H$.

- (xiv) Isomorphism of covering spaces.
- (xv) Suppose that a space X is path-connected, locally path-connected, and semilocally simply-connected. Then two path-connected covering spaces $p_1: \widetilde{X_1} \to X$ and $p_2: \widetilde{X_2} \to X$ are isomorphic via an isomorphism $f: \widetilde{X_1} \to \widetilde{X_2}$ taking basepoint $\widetilde{x_1} \in p_1^{-1}(x_0)$ to a basepoint $\widetilde{x_2} \in p_2^{-1}(x_0)$ iff $p_{1*}(\pi_1(\widetilde{X_1}, \widetilde{x_1})) = p_{2*}(\pi_2(\widetilde{X_2}, \widetilde{x_2})).$
- (xvi) (Classification of covering spaces) Suppose that a space X is pathconnected, locally path-connected, and semilocally simply-connected. Then there is a bijection between the set of basepoint-preserving isomorphism classes of path-connected covering spaces $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ and the set of subgroups of $\pi_1(X, x_0)$. Moreover, if the basepoints are ignored, this gives a bijection between isomorphism classes of pathconnected covering spaces $p: \widetilde{X} \to X$ and the conjugacy classes of subgroups of $\pi_1(X, x_0)$.
- (xvii) Deck transformations and the group $G(\widetilde{X} \xrightarrow{p} X)$ of deck transformations of a covering space $p: \widetilde{X} \to X$.
- (xviii) Normal covering spaces.
- (xix) Let $p: (X, \widetilde{x_0}) \to (X, x_0)$ be path-connected covering spaces of the pathconnected, locally path-connected space X, and let $H = p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$. Then:
 - (a) This covering space is normal iff $H \leq \pi_1(X, x_0)$.
 - (b) $G(\widetilde{X} \xrightarrow{p} X) \cong N(H)/H$.

In particular, $G(\widetilde{X}) \cong \pi_1(X, x_0)/H$, if \widetilde{X} is a normal covering. Hence if $p: \widetilde{X} \to X$ is the universal covering, then $G(\widetilde{X} \xrightarrow{p} X) \cong \pi_1(X)$.

- (xx) The action of a group G on X, its orbits G_x , and the orbit space X/G.
- (xxi) Covering action.
- (xxii) If the action of a group G on a space X is a covering action, then:
 - (a) The quotient $p: X \to X/G$ is a normal covering space.
 - (b) If Y is path-connected, then $G = G(X \xrightarrow{p} X/G)$.
 - (c) If Y is path-connected and locally path-connected, then $G \cong \pi_1(X/G)/p_*(\pi_1(X)).$

2.4. The lifting correspondence and $\pi_1(S^1)$.

(i) The lifting correspondence.

- (ii) Let $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ be a covering map. If \widetilde{X} is a path-connected, then the lifting correspondence $\phi: \pi_1(X, x_0) \to p^{-1}(x_0)$ is surjective. Furthermore, if $\pi_1(\widetilde{X}, x_0) = 0$, then ϕ is bijective.
- (iii) Let $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ be a covering map.
 - (a) Then $p_*: \pi_1(\widetilde{X}, \widetilde{x_0}) \to \pi_1(X, x_0)$ is injective.
 - (b) The lifting correspondence ϕ induces an injective map

$$\Phi: \pi_1(X, x_0)/H \to p^{-1}(x_0),$$

where $H = p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$. Moreover, Φ is bijective if \widetilde{X} is pathconnected.

- (c) A loop α based at x_0 lifts to a loop $\widetilde{\alpha}$ based at $\widetilde{x_0}$ iff $[\alpha] \in H$.
- (iv) The fundamental group of S^1 is isomorphic to the additive group of integers.

2.5. Applications of $\pi_1(S^1)$.

- (i) Alternative proof for the fundamental theorem of algebra.
- (ii) (Brouwer's fixed point theorem) Every continuous map $h:D^2\to D^2$ has a fixed point.

2.6. Seifert-van Kampen Theorem.

- (i) Free groups.
- (ii) Universal property of free groups.
- (iii) Every group is G the quotient of a free group F(S).
- (iv) Every group G has a presentation given by $\langle S|R\rangle$, where S is a generating set, and R is a set of relations.
- (v) Free products of groups.
- (vi) (Special case of Seifert-van Kampen Theorem) Suppose that $X = U \cup V$, where U and V are open sets of X. Suppose that $U \cap V$ is path-connected and $x_0 \in U \cap V$. Let $i : U \hookrightarrow X$ and $j : V \hookrightarrow X$. Then $\pi_1(X, x_0)$ is generated by $\operatorname{Im}(i_*)$ and $\operatorname{Im}(j_*)$.
- (vii) (Seifert-van Kampen Theorem) If X is the union of path-connected open sets A_{α} each containing the basepoint $x_0 \in X$, and if each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then the natural homomorphism $\Phi : *_{\alpha} \pi_1(A_{\alpha}) \to \pi_1(X)$ obtained as an extension of the homomorphisms $(j_{\alpha})_*$ induced by the inclusion maps $j_{\alpha} : A_{\alpha} \hookrightarrow X$, is surjective. If in addition each intersection $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path-connected, then the kernel of Φ is the normal subgroup N generated by all the elements of the form $(i_{\alpha\beta})_*(w)*(i_{\beta\alpha})_*(w)^{-1}$, where $(i_{\alpha\beta})_*$ and $(i_{\beta\alpha})_*$ are induced by the

10

inclusion maps $i_{\alpha\beta} : A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\alpha}$ and $i_{\beta\alpha} : A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\beta}$ respectively. Consequently, Φ induces an isomorphism $\pi_1(X) \cong *_{\alpha} \pi_1(A_{\alpha})/N$.

- (viii) Wedge products $\bigvee_{\alpha} X_{\alpha}$ of spaces X_{α} .
- (ix) The fundamental group of a wedge product $\bigvee_{\alpha} S^1$ of circles.

2.7. Cell complexes.

- (i) Construction of a cell-complex.
- (ii) Cell-complex structure on surfaces.
- (iii) Products and quotients of cell-complexes.
- (iv) The cone CX of a space X.
- (v) Subcomplexes and CW-pairs.
- (vi) Homotopy Extension Property (HEP) for a pair of spaces (X, A).
- (vii) Homotopically equivalent spaces X and Y $(X \simeq Y)$.
- (viii) If $X \simeq Y$, then $\pi_1(X) \cong \pi_1(Y)$.
- (ix) Deformation retraction of a space X onto a subspace A.
- (x) If X deformation retracts onto A, then $\pi_1(A) \cong \pi_1(X)$.
- (xi) Contractible spaces.
- (xii) If (X, A) is a CW-pair, then it has the HEP.
- (xiii) If (X, A) is a CW-pair and A is contractible, then the quotient map $X \to X/A$ is a homotopy equivalence.
- (xiv) The effect of attaching 2-cells to a path-connected space X.
- (xv) Surfaces as cell-complexes.
- (xvi) Connection sum operation on surfaces.
- (xvii) (The Classification Theorem for closed surfaces) Any closed surface is homeomorphic to the sphere S^2 , or the connected sum of finitely many tori, or the connected sum of a finitely many projective planes (i.e. copies of $\mathbb{R}P^2$ or cross-caps).
- (xviii) Presentations for the fundamental groups of closed surfaces.
- (xix) For every group G, there is a 2-dimensional complex X_G with $\pi_1(X_G) \cong G$.

2.8. Graphs and free groups.

- (i) Graphs as 1-dimensional cell complexes.
- (ii) Trees and maximal trees.
- (iii) Every connected graph has a maximal tree.
- (iv) Every covering space of a graph is also a graph.
- (v) Every subgroup of a free group is free.
- (vi) Covering spaces of the figure-eight space.

2.9. Cayley complexes.

- (i) Cayley graph of a group.
- (ii) Cayley complex $\widetilde{X_G}$ of the space X_G . (iii) $\widetilde{X_G}$ is a simply-connected covering space of X_G , and hence its universal cover.
- (iv) When G = F(a, b), $\widetilde{X_G}$ is the tetravalent tree, and when $G = \mathbb{Z}^2$, $\widetilde{X_G} \approx \mathbb{R}^2.$

12